
D

D
R

P
t
b
n
b
b
t

P
n
t
t
a
n
g
r
a
c
n
m
n
e
t
c
p
n
d
T
t
t

N

n
h
G
t
o
g
s
c
h
u
a
g
2
s

F

A

0
d

EBATES IN NEUROSCIENCE

epression: A Case of Neuronal Life and Death?
onald S. Duman

reclinical and clinical studies have demonstrated that stress or depression can lead to atrophy and cell loss in limbic brain structures
hat are critically involved in depression, including the hippocampus. Studies in experimental animals demonstrate that decreased
irth of new neurons in adult hippocampus could contribute to this atrophy. In contrast, antidepressant treatment increases
eurogenesis in the hippocampus of adult animals and blocks the effects of stress. Moreover, blockade of hippocampal neurogenesis
locks the actions of antidepressants in behavioral models of depression, demonstrating a direct link between behavior and new cell
irth. This perspective reviews the literature in support of the hypothesis that altered birth of new neurons in the adult brain contributes
o the etiology and treatment of depression and considers research strategies to test this hypothesis.
revious hypotheses to explain the cause and treatment of
depression have been based in part on the acute actions of
antidepressants (i.e., blockade of serotonin and norepi-

ephrine reuptake or breakdown); however, the time lag for a
herapeutic response has led to the hypothesis that adaptations
o the acute actions of antidepressants are necessary. Cellular
daptations can occur at many levels, including regulation of
eurotransmitter receptors, signal transduction cascades, and
ene transcription. Advances in cell biology and imaging have
evealed that these neurochemical adaptations can lead to alter-
tions in cell morphology (e.g., alterations in the length and
omplexity of neuronal processes) and even the birth of new
eurons. Moreover, it is now clear that alterations in neuronal
orphology and cell number represent fundamental mecha-
isms of neuronal plasticity that allow an animal to adapt to
nvironmental, behavioral, and pharmacologic stimuli and
hereby make appropriate long-term responses. These con-
epts and advances have been applied to studies of antide-
ressants and have resulted in the novel hypothesis that altered
eurogenesis plays a role in the etiology and treatment of
epression (Duman et al 2001; Kempermann and Gage 2002).
he focus of this perspective is to review the evidence in favor of
his hypothesis. Avenues of research that can be developed to
est this exciting hypothesis are also discussed.

eurogenesis in Adult Brain

The presence of neural progenitor cells that give rise to new
eurons in the adult brains of a variety of species, including
umans, has been firmly established (Figure 1; Duman et al 2001;
age 2000; Gould et al 1999). Adult neurogenesis is restricted to

he subventricular zone, which gives rise to granule cells in the
lfactory bulb and in the subgranular zone, which generates new
ranule cells in the adult hippocampus. Immature neurons in
ubgranular zone of the hippocampus migrate into the granule
ell layer, extend processes, and mature into granule cells that
ave physiologic characteristics that are similar to existing gran-
le cells (van Praag et al 2002). In rodent brain, it is estimated that
pproximately 250,000 new neurons, or approximately 6% of the
ranule cell layer, are formed each month (Cameron and McKay
001). The estimates of the number of new neurons are much
maller in primates than rodents (�10%; Gould et al 1999;
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Kornack and Rakic 2001), but even this lower rate of neurogen-
esis over longer periods of time may be sufficient to have
functional significance.

Clinical Evidence for Atrophy of Hippocampus in Mood
Disorders

Indirect evidence suggesting that altered neurogenesis could
occur in mood disorders is provided by brain imaging studies of
hippocampus. These studies report that hippocampus volume is
decreased in patients with depression (Bremner et al 2000; Frodl
et al 2002; MacQueen et al 2003; Mervaala et al 2000; Saarelainen
et al 2003; Shah et al 1998; Sheline et al 1996, 1999, 2003; Steffens
et al 2000; Vermetten et al 2003). Other studies have reported no
reduction in hippocampal volume, although specific measure-
ments of hippocampus were not conducted or included the
amygdala (Axelson et al 1993; Vakali et al 2000; for complete
references, see Posener et al 2003). One study found no change
in volume but reported that the shape of the hippocampus is
different in depressed patients (Posener et al 2003). The magni-
tude of the reduction in volume is reported to be directly related
to the length of illness (Sheline et al 2000). Moreover, antide-
pressant medication reduces or even reverses hippocampal
atrophy in depressed or PTSD patients (Sheline et al 2003;
Vermetten et al 2003). Imaging studies of other brain regions also
report altered brain morphology, including reduced volume of
prefrontal cortex (Bremner et al 2000; Drevets et al 1997). In
addition, postmortem studies demonstrate that there is a reduc-
tion in the size of neurons and number of glia that could underlie
the reduction in cortical volume (Cotter et al 2001; Ongur et al
1998; Rajkowska et al 1999). It is unlikely that decreased
neurogenesis contributes to the atrophy of these cortical brain
regions because most studies to date have not observed neuro-
genesis in adult cerebral cortex (Koketsu et al 2003; Kornack and
Rakic 2001), although this has been a controversial subject
(Gould et al 1999, 2001).

The imaging studies provide indirect evidence for alterations
in cell number or morphology in the hippocampus in mood
disorders and a major goal of current research is to identify these
cellular changes. One possibility is that decreased neurogenesis
contributes to hippocampal atrophy and thereby underlies the
pathophysiology of depression and stress-related disorders;
however, it is likely that other mechanisms such as death or
atrophy of existing neuronal processes or loss of glia could also
contribute to the reduced volume of hippocampus (McEwen
1999; Sapolsky 2002). Detailed postmortem analysis of the
hippocampus of depressed patients will be necessary to address
this issue.
BIOL PSYCHIATRY 2004;56:140–145
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ippocampus and Depression

The hippocampus is a brain region most often associated with
ontrol of learning and memory; however, reduced volume of
his brain region in depressed patients suggests that the hip-
ocampus could also contribute to certain symptoms of depres-
ion. Cognitive dysfunction and altered control of the hypothal-
ic-pituitary-adrenal (HPA) axis could be explained in part by
ecreased function of the hippocampus. The hippocampus has
lso been implicated in anxiety as local infusions of anxiolytics or
esions of hippocampus produce anxiolytic responses in behav-
or in models of anxiety (Deacon et al 2002; Degroot and Treit
002; File et al 2000; Menard and Treit 2001). In addition, the
ippocampus provides inputs to other brain regions, including
he prefrontal cortex, cingulate cortex, and amygdala that con-
ributes heavily to altered mood and emotion in depression
Drevets 2001; Manji et al 2001). Based on these considerations,
t is plausible to hypothesize that altered neurogenesis in hip-
ocampus contributes directly to some, but not all aspects of
epression, and could indirectly influence other symptoms of
ood disorders including PTSD.

igure 1. Model of neurogenesis in adult hippocampus. The upper panel
emonstrates immunohistochemical analysis of neurogenesis in adult rat
ippocampus. In dividing cells a thymidine analog, bromodeoxy uridine

BrdU) is incorporated into newly synthesized DNA, and an antibody against
rdU is then used to visualize newborn cells. At a short time point after
roliferation (2 hours after BrdU administration), BrdU-immunopositive
ells (arrowheads) are often found in clusters and are localized to the sub-
ranular zone (SGZ) between granule cell layer (GCL) and hilus. A diagram
epicting the location of neural progenitor cells and maturing neurons is
hown in the bottom panel. Approximately 80% of the newborn cells differ-
ntiate into neurons and the remaining cells differentiate into glia or have
n undetermined phenotype. Cells destined to become neurons migrate

nto the granule cell layer, mature, and take on characteristics of adult
ranule cells. This includes extension of dendrites into the molecular layer

ML) and axons into the CA3 pyramidal cell layer via the mossy fiber pathway
mfp). Scale bar is upper panel represents 200 �m.
Stress Decreases Adult Neurogenesis
A key connection between neurogenesis and depression

comes from studies of stress, which can precipitate or worsen
depression (Brown et al 2003; Gold and Chrousos 2002) and is
often used as a model in preclinical studies (Willner 1990). Stress
produces a profound effect on neurogenesis, causing rapid and
robust reductions in the proliferation of newborn neurons in
adult brain (Table 1). Decreased neurogenesis has been reported
with different types of stress and in different experimental
animals, including intruder stress in marmosets (Gould et al
1998), subordination/psychosocial stress in tree shrews (Czeh et
al 2001; Gould et al 1997; van der Hart et al 2002) and in rodents
predator odor (Tanapat et al 2001), social defeat (Czeh et al
2002), chronic restraint (Pham et al 2003), footshock stress
(Malberg and Duman 2003), and chronic mild stress (Alonso et al
2004). Prenatal stress also decreases neurogenesis in the adult
hippocampus and is associated with reduced learning in rat
(Lemaire et al 2000) and emotional behavior in rhesus monkeys
(Coe et al 2003). In addition, inescapable stress leads to a
reduction in neurogenesis that correlates with behavioral despair
several days after exposure to stress in the learned helplessness
model of depression (Malberg and Duman 2003). This correla-
tion between decreased neurogenesis and behavioral despair at
a time point well after exposure to stress indicates that the
reduction in neurogenesis is not simply due to acute stress, and
suggests that there is a relationship between reduced neurogen-
esis and the behavioral state of the animal.

The influence of the hypothalamic-pituitary-adrenal (HPA)
axis on adult neurogenesis also provides a link with mood
disorders. Activation of the HPA axis is one of the primary
physiologic responses that prepares an animal physically and
behaviorally to respond to stressful conditions. Approximately
50% of depressed patients exhibit dysfunctional regulation of this
system, resulting in sustained elevation of cortisol, and lack of
response to acute challenge with a synthetic glucocorticoid (i.e.,
nonresponders in the dexamethasone suppression test; Brown et
al 2003; Gold and Chrousos 2002). Administration of adrenal-
glucocorticoids to experimental animals decreases neurogenesis
in the adult brain, mimicking the effects of stress (Cameron et al
1998; Gould et al 1992). The implication of these findings is that
activation of the HPA axis and sustained elevation of glucocor-
ticoids could lead to chronic inhibition of adult neurogenesis in
the hippocampus. Because the hippocampus also provides
negative feedback regulation of the HPA axis, it has been
suggested that atrophy in depressed patients could lead to a
recurrent and damaging cycle of HPA overactivation and sus-
tained hippocampal atrophy (McEwen 1999; Sapolsky 2001).

Antidepressant Treatment Increases Adult
Neurogenesis

Another important link between neurogenesis and mood
disorders comes from studies of antidepressant drugs. In contrast
to the effects of stress, antidepressant treatment increases neu-
rogenesis in adult hippocampus (Table 1) (Czeh et al 2001;
Madsen et al 2000; Malberg et al 2000; Manev et al 2001; Santarelli
et al 2003). The induction of neurogenesis by antidepressants is
dependent on chronic treatment, consistent with the time course
for the therapeutic action of these medications. Upregulation of
neurogenesis in the adult hippocampus occurs after chronic
administration of different classes of antidepressants, including
5-HT and norepinephrine selective reuptake inhibitors, mono-
amine oxidase inhibitors, and electroconvulsive seizures. This
www.elsevier.com/locate/biopsych
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uggests that induction of adult neurogenesis may represent a
ommon final target of different classes of antidepressants. Other
reatments reported to have antidepressant effects and to in-
rease neurogenesis include estrogen (Tanapat et al 1999),
ehydroepiandrosterone (DHEA; Karishma and Herbert 2002),
nd exercise (van Praag et al 1999). One study has found that
ranscranial magnetic stimulation did not increase adult neuro-
enesis, although this treatment partially reversed the effects of
ocial defeat on adult neurogenesis (Czeh et al 2002).

Antidepressant treatment influences at least two important
spects of adult neurogenesis, proliferation and survival of
ewborn neurons. Proliferation refers to the number of cells that
re born in a given period of time and is typically analyzed within
short period (2 hours) after BrdU administration. This short

ime point is the approximate length of S phase of the cell cycle.
he results of a study that directly analyzes cell proliferation at
his early time indicates that antidepressants increase the rate of
ew cell birth (Malberg et al 2000).

After cell birth approximately half of the cells undergo a
rocess of degeneration over the course of 3–4 weeks. Admin-

Table 1. Influence of Stress or Antidepressant Treatme

Treatment Effect

Stress
Social/subordination Decrease
Social/subordination Decrease

Social/subordination Decrease
Predator odor Decrease
Restraint Decrease
Immobilization Decrease
Footshock Decrease
Footshock Decrease
Chronic mild stress Decrease
Prenatal stress Decrease
Prenatal stress Decrease

Corticosterone Decrease
Adrenalectomy Increase
Antidepressant Treatment

Fluoxetine Increase
Fluoxetine Increase
Imipramine Increase
Tranylcypromine Increase
ECS Increase
Reboxetine Increase
Rolipram Increase
TMS No Effect

Estrogen Increase
DHEA Increase
Exercise/Running Increase
Antidepressant Blockade of

Stress Effects
Tianeptine Blocks-Social
NK1-R antagonist Blocks-Social
Clorimipramine Blocks-Social
Fluoxetine Blocks-Inescap
CRF-R1 antagonist Blocks-Chr Mild
AVP1b Blocks-Chr Mild
Fluoxetine Blocks-Chr Mild
Fluoxetine Blocks-Mat Sep

ECS, electroconvulsive seizures; TMS, transcranial m
neurokinin1-receptor; CRF-R1, corticotrophin releasing h
Inescap, inescapable footshock stress; Chr Mild, chronic
ww.elsevier.com/locate/biopsych
istration of antidepressants during this critical period increases
the number of neurons that survive when determined at a
4-week time point (Nakagawa et al 2002a). Current studies are
underway to determine whether antidepressants also increase
the rate of neuronal maturation, which can be determined by the
rate of growth of the processes (i.e., number and length of
dendrites) of newborn neurons. The putative antidepressant,
rolipram, has been shown to increase neuronal maturation
(Fujioka et al 2004), as well as proliferation and survival (Naka-
gawa et al 2002a, 2002b). All of these effects would be expected
to block or reverse the effects of stress, and possibly depression,
on hippocampal atrophy.

Antidepressant Treatment Blocks the Effects of Stress
on Adult Neurogenesis

Antidepressant treatment also blocks the effects of stress, or
normalizes levels of neurogenesis, in adult hippocampus. This
interaction has been observed with several types of stress models
and antidepressant treatments (Table 1). Chronic administration

Neurogenesis in Adult Hippocampus

pecies Reference

rmoset Gould et al 1998
e Shrews Czeh et al 2001; Gould et al 1997;

Van der Hart et al 2002
t Czeh et al 2002
t Tanapat et al 2001
t Pham et al 2003
t Vollmayr et al 2003
t Malberg and Duman 2003
t Vollmayr et al 2003
use Alonso et al 2004

t Lemaire et al 2000
esus Coe et al 2003
t Cameron et al 1998; Gould et al 1992
t Cameron and McKay 1999

t Malberg et al 2000; Manev et al 2001
use Santarelli et al 2003
use Santarelli et al 2003

t Malberg et al 2000
t Madsen et al 2000; Malberg et al 2000
t Malberg et al 2000
t Nakagawa et al 2002a
t Czeh et al 2002
t Tanapat et al 1999
t Karishma and Herbert 2002
use van Praag et al 1999

e Shrew Czeh et al 2001
e Shrew van der Hart et al 2002
e Shrew van der Hart et al 2002

t Malberg and Duman 2003
use Alonso et al 2004
use Alonso et al 2004
use Alonso et al 2004

t Lee et al 2001

ic stimulation; DHEA, dehydroepiandrosterone; NK1-R,
ne receptor 1; AVP1b, arginine vasopressin receptor 1b;

stress; Mat Sep, maternal separation stress.
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f an atypical antidepressant, tianeptine, blocks the effects of
ubordination stress on neurogenesis in the hippocampus of
dult tree shrews (Czeh et al 2001). A similar effect has been
bserved after chronic administration of a neurokinin-1 receptor
ntagonist, a drug that has been shown to have antidepressant
fficacy in clinical trials, or a tricyclic antidepressant (clomipra-
ine; van der Hart et al 2002). These two elegant studies also
emonstrate that the volume of the hippocampus is decreased by
ubordination stress and that antidepressant treatment reverses
his atrophy. Downregulation of neurogenesis by social defeat is
artially reversed by transcranial magnetic stimulation (Czeh et al
002). A recent study found that chronic administration of either
corticotrophin releasing factor receptor-1 (CRF-R1) or arginine
asopressin receptor-1b (AVP1b) antagonist blocks the down-
egulation of neurogenesis caused by chronic mild stress (Alonso
t al 2004). The influence of maternal separation stress on
eurogenesis in young rats (14–21 days) is reversed by chronic
luoxetine administration (Lee et al 2001). We have found that
he long-lasting decrease in neurogenesis that occurs after expo-
ure to inescapable stress is reversed by antidepressant treat-
ent, and this effect is accompanied by a reversal of the
ehavioral despair in the learned helplessness model of depres-
ion (Malberg and Duman 2003). The results of these studies
emonstrate that antidepressant treatment not only influences
eurogenesis in normal, unchallenged animals but can also
lock the effects of stress on neurogenesis in the adult brain.

eurogenesis Is Necessary for the Action of Antidepressants
n Behavioral Models

The ability of antidepressant treatment to increase neurogen-
sis in adult brain and to block the effects of stress provides
trong evidence that adult neurogenesis may play a role in the
reatment of depression and could possibly contribute to the
llness itself; however, this data is only correlative and does not
rovide direct evidence that neurogenesis is a necessary cellular
esponse for the treatment of mood disorders. The function of
ewborn neurons in adult brain has been difficult to assess
xperimentally because it is difficult to specifically block cell
irth without influencing mature neurons and glia in the brain as
ell as nonneuronal cells in other tissues.
The function of newborn cells in hippocampus has been

ddressed in a recent study, however, that provides direct
vidence that adult neurogenesis is necessary for an antidepres-
ant response in behavioral models (Santarelli et al 2003). In this
tudy, cell proliferation was blocked by exposure to irradiation
hat is focused on the hippocampus of adult mice. Irradiation
ecreases basal and blocks antidepressant induction of neuro-
enesis in the hippocampus and results in a corresponding
lockade of the response to antidepressant treatment in two
ehavioral paradigms, novelty suppressed feeding and chronic
npredictable stress. In the novelty suppressed feeding para-
igm, irradiation blocks the effect of antidepressant treatment on
he latency to approach food pellets in the middle of an open
ield (i.e., antidepressants decrease the latency). In the chronic
npredictable stress model, irradiation blocks the effects of
ntidepressant treatment on the maintenance of the coat condi-
ion and grooming, which deteriorate with long-term stress.
mportant controls were also conducted in this study: irradiation
id not influence neurogenesis in the subventricular zone,
emonstrating the specificity of the irradiation treatment, and
rradiation did not influence the functional properties of hip-
ocampal neurons, determined by analysis of long-term poten-
iation.
These data provide strong support for the hypothesis that
neurogenesis is required for antidepressant responses; nonethe-
less, there are a few points to consider. First, it is possible that
other effects of irradiation, not decreased neurogenesis, account
for the blockade of the behavioral responses to antidepressants.
Second, the results do not demonstrate that blockade of neuro-
genesis leads to a more depressive condition in these behavioral
models. Although irradiation dramatically reduces neurogenesis
by 90% relative to sham-treated controls, there was no significant
difference in the baseline behavior in either novelty suppressed
feeding or chronic unpredictable stress (Santarelli et al 2003).
This is consistent with another report that decreased neurogen-
esis is not correlated with behavior in the learned helplessness
model of depression (Vollmayr et al 2003). These results indicate
that neurogenesis may not be necessary for baseline responding
in these behavioral models. Alternatively, mature neurons that
are already present may be sufficient to support baseline behav-
ioral responses. To test this hypothesis, the influence of more
long-term blockade of neurogenesis on behavioral responding
should be tested. Irradiation produces a long-lasting blockade of
neurogenesis and animals could be examined at a longer time
point to test this hypothesis. It is also possible that repeated or
sustained downregulation of neurogenesis could contribute to
recurrent depression or more severe cognitive deficits in older
depressed patients, as discussed by Henn and colleagues (Voll-
mayr et al 2003).

In addition to their findings on irradiation, Santarelli et al
(2003) found that antidepressant regulation of neurogenesis is
blocked in 5-HT1A null mutant mice and that there is a corre-
sponding blockade of the behavioral response to a 5-HT selec-
tive reuptake inhibitor in the novelty suppressed feeding para-
digm. This provides additional evidence that 5-HT1A receptors
mediate responding to 5-HT selective antidepressants and pro-
vides additional correlative data for neurogenesis in the behav-
ioral actions of antidepressants.

Consideration of Time Course and Other Behavioral Models
The novelty suppressed feeding and chronic unpredictable

stress models were chosen because the effect of antidepressants
in these models is dependent on chronic treatment (i.e., 3
weeks), consistent with the time course for the therapeutic action
of antidepressants. Although novelty suppressed feeding is usu-
ally considered a model of anxiety, the requirement for long-term
antidepressant treatment validates the choice of this model. This
is a critical point because it is likely that the function of newborn
neurons may not be manifested for several weeks after birth,
when the new neurons mature and make appropriate synaptic
contacts.

The rapid response time to antidepressants is a limitation of
other standard models of depression, such as forced swim and
learned helplessness, that is, acute (1 day) or subchronic (�5
days) antidepressant treatments are effective in these paradigms.
This raises a question regarding the validity of these paradigms to
model the actions of long-term antidepressant treatment required
for a therapeutic response, even though these models are widely
used for drug testing and behavioral studies. Consequently, the
rapid response makes it difficult to test the role of neurogenesis
in the behavioral actions of antidepressants in the forced swim
test and learned helplessness models. One possible explanation
is that newborn neurons that have already been born before
testing and are in the process of maturing are influenced by acute
or subchronic antidepressant treatment (i.e., the survival or
function, but not proliferation, of newborn neurons is regu-
www.elsevier.com/locate/biopsych
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ated and could be involved in the antidepressant response).
et another consideration is that the depression–antidepres-
ant paradigms are better models of general stress effects seen
n a number of illnesses, most notably posttraumatic stress
isorder.

esting the Hypothesis: Analysis of Neurogenesis in the
rains of Depressed Patients

The results of studies in experimental animals provides
vidence that neurogenesis could contribute to the alterations in
ippocampal volume identified in brain imaging studies of
epressed patients; however, to test this hypothesis directly,
nalysis of neurogenesis and cell number in hippocampus of
epressed patients, on or off antidepressant medication, are
equired. Analysis of postmortem tissue from depressed patients
nd matched control subjects can provide this type of informa-
ion. Total cell counts can be obtained by stereologic counting of
eurons and glia. In addition, immunohistochemical studies
sing antibodies against cell cycle markers or immature newborn
eurons can be used as a measure of cell proliferation in
ostmortem tissue. This type of analysis will indicate whether
eurogenesis is reduced in depressed patients and whether
ntidepressant treatment blocks this effect or even increases
dult neurogenesis in humans. It is also possible that a ligand or
arker of neurogenesis for imaging studies in living patients will

ventually be developed, although the low rate of neurogenesis
n human brains will require a sensitive probe with extremely
ow background.

Further testing of this hypothesis will be possible as new
pproaches are developed to manipulate neurogenesis in the
dult human brain. A major focus of current research efforts in
he field is to identify the neurotrophic and growth factors and
ignaling pathways that control adult neurogenesis (see reviews
y Duman et al 2001; Gage 2000). In this rapidly advancing field,
t may be possible in the near future to deliver the appropriate
ombination of growth factors that support or promote neuro-
enesis in the human hippocampus. Alternatively, it may be
ossible to use pharmacologic approaches that target endoge-
ous neurotransmitter signaling systems to stimulate expression
f these growth factors in the hippocampus.

onclusions

The studies cited and discussed in this review provide support
or the hypothesis that regulation of neurogenesis in the adult
ippocampus contributes to the treatment, and possibly the
athophysiology, of depression. Additional studies, in both
xperimental animals and in humans, are required to test this
ypothesis. It is possible that neurogenesis in hippocampus
nderlies specific symptoms of depression but that alternate
daptive mechanisms in hippocampus as well as other limbic
tructures (i.e., amygdala and prefrontal cortex) are also re-
uired. This may include regulation of gene transcription and
xpression of neurotrophic factors that influence neuronal mor-
hology in other ways (e.g., increased length and number of
euronal processes and/or synaptogenesis; Duman et al 2000;
cEwen 1999). In either case, it is likely that these studies of cell
irth and neuronal morphology, as well as brain imaging studies,
ill continue to demonstrate that structural as well as neuro-

hemical alterations play a significant role in mood disorders.
ww.elsevier.com/locate/biopsych
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